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It is well known that in the calculation of wave functions very good results can be obtained for the molec- 
ular or atomic energy, namely 99 % of the experimental value or better. Some other physical properties 
do not agree as well with experimental data; these include dissociation energies and ionization poten- 
tials. In the case of the physical properties dependent for their calculation upon electron charge densities 
a better agreement is obtained, perhaps because the first order correction to the Hartree-Fock charge 
distribution is zero. The good agreement obtained for total energies may come from compensated errors 
in various parts of their distributions, and cannot give sufficient information concerning the other 
properties. It is now reasonable to believe that very accurate calculations and experiments on scattering 
phenomena may be used together to study electronic distribution in various scatterers. It is the aim of 
this paper to show that scattered intensities and spectral studies of the modified radiation may give 
complementary information. 

Several calculations made for light atoms and molecules are discussed and compared with experimen- 
tal data when possible. Some results obtained are discussed in relation to chemical bonding for which 
accurate atomic and molecular electronic densities are required. 

Introduction 

During recent years a large number of calculations 
have been done on scattering factors and intensities 
and on the shape of the Compton profiles. Generally 
made by different authors, these calculations have 
never been definitely compared. This comparison now 
seems very useful with the advent of high resolution 
spectrometers and more accurate wave functions. It is 
only recently that Kilby (1965) has shown that the 
Compton profile, to a first approximation, can be de- 
duced from the Waller & Hartree (1929) theory; when 
the results obtained with the help of this theory are 
compared with experimental data, it is shown that the 
method is very convenient for studying the effects of 
scattering as well as the Compton profiles. Although 
these methods are first approximations to more rigor- 
ous theories, they give good results as far as incident 
beams of high energy are concerned. 

Important  contributions to this work have recently 
been published particularly by Bonham & lijima (1963), 
Bonham (1965a, b,c,d,e); Tavard, Roux & Cornille 
(1962, 1963), Tavard, Roux & Rouault (1964), Tavard 
& Roux (1965); Tavard (1966); Kilby (1963, 1965), 
and Bartell & Gavin (1964). Important sets of referen- 
ces can be found in these articles. 

Waller and Hartree's theory 

It is easy to show with the use of Waller & Hartree's 
theory that scattered intensities, in the case of incident 
X-ray of high energy, can be written as a sum of terms 
in the form: 

lom=Zct V---v3lDoml2 (1) 

where v and v' are the frequencies of the incident and 
scattered radiations, and 
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N i [j e qr,]  o x,dx 
In equation (2) V0 is the wave function for the ground 
state of the scatterer; ~'m is the wave function of an 
excited state m which could be in the discrete or con- 
tinuous spectrum of the system; q is the usual param- 
eter related to the diffraction angle 

sin 0/2 
lql = 4re - - - -~- - -  (3) 

with 2 the wave length of the incident radiation and 
0 the scattering angle between the incident and scat- 
tered rays. Ia is the Thomson expression related to 
the intensity scattered by an electron. The x values are 
the space and spin coordinates for the N electrons of 
the system. 

Introducing certain approximations limiting the ap- 
plicability of the formula to the case of an incident 
beam of high energy, the use of perturbation theory 
and the closure properties of the spherical harmonics, 
the total and coherent intensities may be written (Wal- 
ler & Hartree, 1929): 

l ] N e iq'r] 2 /tot=/cZ I~,o(x)l z j z  dx (4) 

IS /eoh = let I~,0(x)l 2 Z' eiq'ri ; (5) 
j = l  

in these expressions v' is considered not very different 
from v and the ratio v'/v is 1. These equations show 
that the only wave function required for this approx- 
imation is that of the ground state of the scatterer. 
The neglected terms in the Waller & Hartree theory 
were evaluated by Bonham (1965a) and are of the 
order of 10 -4 for X-rays of 0.712 fl_ (Mo Kc 0. 

If we use the usual wave functions built up with a 
set of orthogonalized spin orbitals (P~ it is possible to 
define the structure factors by the two following ex- 
pressions. /o 

f( tPi)= 1 ~*(x)~O?(x)elq'r dx (6) 

f ( ~ J ) =  l #i(x)tP*(x)eiq'r dx (7) 

where i and j are the subscripts for the spin orbitals. 
We also define the total scattering factor for the N 

electrons of the system as 

f =  2:f(tP 0 . (8) 
i 

Using these various expressions we can rewrite the 
intensities as 

I~X.=Ia[N+ S ( f ( O d f * ( ~ j ) - l f ( ~ j ) [ 2 ) ]  (9) 
i#j 

and N 
Icoh=Iez[] Z f(~:)12]. (10) 

j = l  

With the use of these expressions established for the 
case of an incident beam of X-rays, Morse (1932), 
Cornille (1963), and Iijima, Bonham & Ando (1963) 
have shown that the same theory can be applied to 
the case of an incident beam of fast electrons; for 
example Cornille (1963) in the case of an atom gives 
the following equations for the elastic and total inten- 
sities: 

N 

IEto~.=I/qg[Z2- Z • ( f (~ j )+f*(~ j ) )  
j = l  

+ N+ X f (~ ' i ) f*(~ ' j ) -  X If(~i~j)l 2] (11) 
i , j  i , j  

N 
lelast= I/q4[lZ- ~r f(~pl)[2], (12) 

j = l  

where q is defined as in equation (3) and I is related 
to experimental conditions. The neglected terms were 
evaluated by Bonham (1965a) and Tavard (1966) and 
are of the order of 10 -4 for 40-keV electrons. The 
functions f(tP) are the same for both X-ray and fast- 
electron scattering. Examinations of equations (9), 
(10), (11) and (12) show that the scattering of X-rays 
and fast electrons can be handled by very similar for- 
malism; if we notice that the wave functions introduced 
in the formulae can be atomic or molecular, we have 
a very useful tool for studying scattering effects. 

Applying this first and approximate stage of the 
theory, we can get quite good results certainly in the 
case of light atoms and molecules for, as was demon- 
strated by Bonham (1965a, b,c), the omitted improve- 
ments are not important in these cases. 

Another point of interest related to the diffraction 
effects is the study of the velocity distribution of the 
electrons of the scatterer. This could be achieved by 
calculation of the shape and width of the Compton 
profile which corresponds to transitions from the 
ground state of the system to the excited states situated 
in the continuum. This effect can be expressed by a 
special type of equation (2), where we suppose that 
the m excited state is well approximated by a plane 
wave. 

Kilby (1963, 1965) has recently shown that, with 
some strict conditions concerning the energy, it is pos- 
sible to apply the Wailer & Hartree theory to the study 
of the Compton profiles using a special Dora term, and 
that it is then possible to get exactly the same expres- 
sion as was obtained by DuMond (1933) who con- 
sidered the momentum distribution as given by 

J(q') = ½1 °° 
I(p) 

q, ---~- dp (13) 

in which q' is defined by 
cl 

q ' -  (14) 
O '  

22~ sin ~- 

where A~ is the wave length of the incident beam and 
l is measured from the center of the Compton profile, 
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0 is the diffraction angle, c is the velocity of light. I(p) 
is the momentum distribution given by 

I x(P)?*(P)PZdf2p" (15) I (p )=  

In this equation the x(p) is the Dirac transform of the 
spin orbital used in coordinate space: 

X(P) = (2rC)-3/2 l tP(r)e-ip'r dr (1 6) 

Accurate calculations of the scattered intensities and 
Compton profiles are very useful, for it may be de- 
monstrated that they provide valuable information 
about potential and kinetic energies. Bonham (1965) 
and Tavard & Roux (1965) have obtained the follow- 
ing expressions: 

_ 1 dq 2 _ N ] d x  (17) 
4zc2 IT I~/Iz [ j = ~ e  iqr' 

for the value of electronic potential energy and 

( XX  Z ~ Z . .  Z~, 1 I ) s z : - -  + x z - -  
/z < v F/zv /z " r / t i  i < j  fg.i 

1 l d q  N 
-- 4n 2 -~-1~,12[IS Zue~q'ru- S, eiSnl2 

/t i = 1  

-Z 'Z2u-N]dx  (18) 
u 

for the total" potential energy. 
It is also possible to derive the kinetic energy from 

the momentum distribution by 

o r  

(. 
(p2)= I x(p)x*(p)pZdp (19) 

So' (p2) = (p)p2dp " (20) 

It has been demonstrated by Ibers (1958) that the 
structure factor for fast electron scattering is related 
to (r z) for the zero value of the scattering parameter 
q and so it can give information on the diamagnetic 
susceptibility. 

It was also shown by Cornille (1966), that in the 
momentum space, the value of the profile J(q') for the 
zero value of the parameter q' gives the mean value 
(p-l). 

In general it is possible to say that the scattered 
intensities and Compton profiles may give informa- 
tions about some of (r n) and (pn). 

Concerning the shape of the energy distributions, 
they could provide a point comparison for various 
theoretical calculations and experiments of high ac- 
curacy. 

As the aim of this paper is not to study the accuracy 
of the calculations but rather to show that the scat- 
tering effects can provide interesting and useful infor- 

mation about electron charge distributions, we will 
only discuss a typical case for one atom and one mol- 
ecule. 

Details of the calculations 

Equations (9) and (10) have been used to calculate the 
total and coherent intensities for incident beams of 
X-rays and equations (11), (12) and (13) to calculate 
the total and elastic intensities in the case of fast elec- 
trons and to compute the Compton profiles, with vari- 
ous wave functions for certain atoms and molecules. 

(a) Atoms 
For the atoms from Li to Ne, four types of scattered 

intensities and the Compton profiles have been calcu- 
lated with the use of wave functions from Slater (1930), 
Duncanson & Coulson (1944), Clementi, Roothaan & 
Yoshimine (1962), and in the case of Ne with wave 
functions calculated by Sachs (1961), Roothaan (1951), 
Donath (1961), and Bernal & Boys (1952). 

The most typical case of the Ne atom has been 
chosen for discussion here. 

(b) Molecules 
Molecular calculations, as is well known, are more 

difficult than atomic calculations, owing to the com- 
plexity of various polycentric integrals, so these calcu- 
lations of scattering effects were first studied with the 
help of the atomic formalism, for certain molecules 
for which there are one-centre molecular wave func- 
tions computed in the united atom approximation 
particularly for CH4, NH3, HF and H20 by Moccia 
(1964). 

The case of the NH3 molecule was selected for dis- 
cussion here. 

Discussion 
(a) Atoms 

Table 1 gives the results obtained for the Ne atom 
with various wave functions including: the width of 
the Compton profile AI; the values of (r 2) from Daw- 
son's (1961) work, the values of (p - l )  deduced by 
Cornille (1966) from the Compton profiles for q ' = 0  
and the total energies. The results are divided in two 
groups placed to the right and to the left of the ex- 
perimental values, for (r 2) and for AI. Although the 
uncertainties in the experimental values, especially for 
(r2), are considerable, it seems that they can be put 
in the same column as the experimental energies and 
the experimental value of the Compton profile width, 
for comparison. We can deduce from Table 1 that, 
when plotted against the widths AI, the total energies 
(which have the same magnitude as the kinetic energy 
but the opposite sign, if the virial theorem is satisfied) 
are seen to pass through a minimum; the minimum 
for the energy must correspond to the experimental 
energy or kinetic energy, so the value of (p2) which 
corresponds to the minimal energy value must in turn 
correspond to the best value of AI. It appears also from 
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Table 1. Compton profile widths, AI, mean values for (r 2) and ( p - l ) ,  and total energies for the Ne atom 

Duncanson Bernal 
Wave & Donath & Boys 

functions Slater Coulson Roothaan Ez P.D. P.D. 
Alu= 33"88 33"88 33"88 32 28"82 28"72 
(r2)u.a. 7"16 7"33 9"10 9"15 
(1/p)u.a. 4"87 4"92 4"95 5"33 5"46 
Etot u.a. - 127"799540 - 127"81219 - 129"03 - 128"740 - 128"690 

00 00 

n - F .  
Sachs, 

Clementi, Boys 
Donath Hartree R.F. 

28.61 28 26.90 
9.41 9.20 
5.45 5.61 

- 128.5470 - 128.14 
00 

Thomas, 
Fermi, Thomas, 
Dirac Fermi 

3 
19.07 

J(q') 

0 1 .H , 
, , , q  

Fig. 1. Compton profile calculation for: N,H,N+3H, calculated with Clementi (1963) wave functions, and for NH3 mole- 
cule with the Moccia (1964) wave function. 

Table 1 that the data are internally consistent in so far 
as a large value of AI corresponds to a small value of 
(r2); a large value of (r 2) corresponds to a large value 
of (p - l ) .  

The various relationships between Al and (r2), ( p - l )  
and (r  z) and (p2) and Al are in agreement with what 
could be expected from the uncertainty principle. 

All these results agree well with the known radial 
characteristics of the Hart ree-Fock and Slater wave 
functions and suggest that the Slater radial densities 
are too contracted and the Hart ree-Fock radial den- 
sities too dispersed. 

Table 2 gives the same information for the listed 
structure factors; it can be seen that the results, here 

Table 2. X-ray scattering factor for the Ne atom, calcu- 
lated with various wave functions 

sin ½0/2 (A-l) f(Slater) f(D.C.) f(P.D.R.F.) f(H.F.) 
0.00 10.00 10.00 10.00 10.00 
0.10 9.48 9"36 9.359 9.351 
0.20 8.15 8.00 7-812 7.808 
0.30 6.52 6.40 6.070 6.084 
0.40 4.90 4.80 4.599 4.617 
0.50 3.66 3.65 3.520 3.530 
0.60 2.82 2.80 2.782 2-782 
0.70 2.32 2-30 2.295 2.288 
0.80 2.00 1.99 1.975 1.965 
0.90 1.78 1"75 1.765 1.752 
1.O0 1.61 1"60 1.621 1.608 

again, fall into two groups. A similar division was also 
obtained by Cornille (1966) for the coherent and total 
intensities of X-ray scattering and for the elastic and 
total intensities of fast electron scattering. 

(b) Molecules 
The study of molecular electronic densities is rele- 

vant to the chemical bonding. For  this reason, the four 
types of scattered intensities and the Compton profiles 
were calculated for CH4, NH3, OH2 and HF. We will 
discuss only the case of the ammonia molecule. These 
calculations have been done with the single-centre ex- 
pansion wave functions which permit the use of the 
much simpler atomic formalism. Some results are given 
in Figs. 1 and 2. 

Fig. 1 gives the Compton profiles respectively ob- 
tained for the N and H atoms, N + 3H atoms and NH3 
molecule calculated with the Moccia (1964) wave func- 
tion. The curves show that for the molecular profile, 
AI is larger than the one obtained with the sum of the 
atomic profiles, a result which is compatible with the 
hypothesis that a contraction of electronic densities 
occurs when a chemical bond is formed. This hypoth- 
esis is strengthened by comparing these results with 
those of Fig. 2, which gives as an example the elastic- 
scattered intensities multiplied by q2 for the ammonia 
molecule, for the Debye and Ehrenfest model which 
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does not take into account the effect of the chemical 
bond (curve A), the molecular calculation with Moccia 
wave function (curve B) and the sum of the atomic 
contributions (dotted line). It can be seen that the 
results of the A and B calculations are quite different 
for small values of the diffraction parameter q. The 
difference was attributed to the effect of chemical 
bonding, which produces a contraction of the elec- 
tronic density; these results have been confirmed by 
Tavard (1966) using polycentric wave functions and 
structure factors and also, experimentally, by Bonham 
& Iijima (1963) and Rouault & Gervais (1966). 

Table 3 gives the most probable value of the mo- 
mentum Pm which is not very different from the mean 
momentum (p )  in the molecules (Sears, 1959). The 
comparison for two isoelectronic sequences of mol- 
ecules between pro, total energies and equilibrium dis- 
tances shows that variations observed in the most 
probable pra correlate with the variations of the inter- 
nuclear distances. This indicates a contraction of the 
electronic densities from CH4 to HF and from Sill4 
to HC1. The mean value (p )  must be the only quantity 
used when comparing the difference between the mol- 
ecule and the sum of the atoms. 

The authors are most grateful to Prof. C. A. Coulson, 
Prof. R.A. Bonham, Dr A. J. Freeman, Dr B. Dawson, 
Dr B.J.Ransil and Dr G.E.Kilby, for advice and 
stimulating discussion during the course of this work. 
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The Structure of Potassium Niobate at Room Temperature: 
The Solution of a Pseudosymmetric Structure by Fourier Methods 

BY LEWIS KATZ* AND HELEN D. MEGAW 
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England 

(Received 5 September 1966) 

In principle, the refinement of a pseudosymmetric structure starting from an idealized high-symmetry 
structure is impossible by routine methods of analysis, such as least-squares, even when the atomic 
displacements are very small. A much more helpful approach is by a method of successive approxima- 
tions. This uses first the most important displacement parameters, whose magnitudes (but not signs) 
can be estimated from electron-density maps or difference maps based on the ideal structure. Certain 
of their signs can be allotted arbitrarily, and the further analysis follows step by step until a realistic 
trial model is obtained in which all (or at least a large proportion of) the displacement parameters have 
the correct and consistent signs and very roughly correct magnitudes. At this stage, routine use of 
least-squares refinement becomes permissible. 

This method has been applied successfully to KNbO3 at room temperature, using X-ray diffraction 
data. The structure is strictly isomorphous with orthorhombic BaTiO3, with space group Bmm2 and 1 
formula-unit per cell, but all deviations from the perovskite aristotype are rather larger in KNbO3. The 
NbO6 octahedra are nearly regular, with Nb displaced by 0"17/~ from their centres, giving Nb-O bond 
lengths of 1.86, 1.99, and 2.18/1,. Since all the octahedra are parallel, the crystal is ferroelectric. 

Comparison of KNbO3 with BaTiO3 directs attention to the importance of O-O repulsions in the 
octahedron edges. By treating nearest-neighbour contacts as a system of links in a state of compression 
or tension, and applying simple statics, a consistent though qualitative explanation can be given of all 
the differences, in terms of the difference in Nb-O and Ti-O bond lengths on the one hand, in size and 
polarizability of K and Ba on the other; the structural features attributable to each of these causes 
can be distinguished. 

Introduction 

Potassium niobate, KNbO3, has a structure belonging 
to the perovskite family. It is polymorphous,  and iso- 

* Work done during leave of absence from the Department 
of Chemistry, University of Connecticut, Storrs, Connecticut, 
U.S.A. 

morphous  in all its forms with bar ium titanate, though 
the corresponding transit ion temperatures are higher 
for potassium niobate.  Their  ferroelectric properties 
are also closely similar. The present work is concerned 
with the or thorhombic  form, stable at room tem- 
perature. The general character of  the structure has 
been known for a good many  years; the determinat ion 


